Robust Semi-Supervised Graph Classifier Learning with Negative Edge Weights

نویسندگان

  • Gene Cheung
  • Weng-Tai Su
  • Yu Mao
  • Chia-Wen Lin
چکیده

In a semi-supervised learning scenario, (possibly noisy) partially observed labels are used as input to train a classifier, in order to assign labels to unclassified samples. In this paper, we construct a complete graph-based binary classifier given only samples’ feature vectors and partial labels. Specifically, we first build appropriate similarity graphs with positive and negative edge weights connecting all samples based on inter-node feature distances. By viewing a binary classifier as a piecewise constant graph-signal, we cast classifier learning as a signal restoration problem via a classical maximum a posteriori (MAP) formulation. One unfortunate consequence of negative edge weights is that the graph Laplacian matrix L can be indefinite, and previously proposed graph-signal smoothness prior xLx for candidate signal x can lead to pathological solutions. In response, we derive a minimum-norm perturbation matrix ∆ that preserves L’s eigen-structure—based on a fast lower-bound computation of L’s smallest negative eigenvalue via a novel application of the Haynsworth inertia additivity formula—so that L + ∆ is positive semi-definite, resulting in a stable signal prior. Further, instead of forcing a hard binary decision for each sample, we define the notion of generalized smoothness on graphs that promotes ambiguity in the classifier signal. Finally, we propose an algorithm based on iterative reweighted least squares (IRLS) that solves the posed MAP problem efficiently. Extensive simulation results show that our proposed algorithm outperforms both SVM variants and previous graph-based classifiers using positive-edge graphs noticeably.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Visual Knowledge Transfer via EDA

—We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA...

متن کامل

Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk

This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...

متن کامل

Semi-Supervised Classification Based on Mixture Graph

Graph-based semi-supervised classification heavily depends on a well-structured graph. In this paper, we investigate a mixture graph and propose a method called semi-supervised classification based on mixture graph (SSCMG). SSCMG first constructs multiple k nearest neighborhood (kNN) graphs in different random subspaces of the samples. Then, it combines these graphs into a mixture graph and inc...

متن کامل

Robust Semi-Supervised Classification for Multi-Relational Graphs

Graph-regularized semi-supervised learning has been used effectively for classification when (i) instances are connected through a graph, and (ii) labeled data is scarce. If available, using multiple relations (or graphs) between the instances can improve the prediction performance. On the other hand, when these relations have varying levels of veracity and exhibit varying relevance for the tas...

متن کامل

Manifold-based Similarity Adaptation for Label Propagation

Label propagation is one of the state-of-the-art methods for semi-supervised learning, which estimates labels by propagating label information through a graph. Label propagation assumes that data points (nodes) connected in a graph should have similar labels. Consequently, the label estimation heavily depends on edge weights in a graph which represent similarity of each node pair. We propose a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1611.04924  شماره 

صفحات  -

تاریخ انتشار 2016